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1. Introduction  

Since the seminal work of Harrison and Stevens (1976) and the publication of West 

and Harrison's book (1st Ed. 1989, 2nd Ed. 1997) (hereafter WH), the Bayesian analysis 

of the linear state space models (called Dynamic Linear Models by WH) has become a 

very useful tool for the analysis of univariate and multivariate time series. One of the 

reasons for their success is the parameter dynamism of these types of models, which 

allows them to adapt to the changing circumstances in which the series evolves. In 

addition, the sequential Bayesian methodology used in parameter estimation and 

forecasting allows the analyst to naturally incorporate subjective information from 

outside the domain of the data. Another important feature of the methodology is the 

sequential monitoring and intervention process described by WH in their Chapter 11. 

These authors state that there are two types of interventions: feed-forward and feed-

back. Feed-forward interventions are subjective and anticipatory in nature and allow the 

analyst to incorporate external information into the model. Feed-back interventions are 

corrective and they are made when deterioration in the model performance has been 

detected. In order to carry out this last type of intervention, WH use a sequential 

monitoring algorithm of the one-step ahead forecast errors by using CUSUM type 

statistics that allow them to analyse the existence of level and variance changes. 

Furthermore, these authors propose a semi-automatic intervention procedure based on 

the diminishing of discount factors (see Section 2) associated to the building of the 

evolution matrices of the different model components. 

However, the whole process suffers from the following drawbacks: 

a) The type of aspects to be monitored (level and/or variance changes in the 

standardised one-step ahead forecast errors) and the kind of interventions to be 

carried out are very limited. Thus, for instance, if a change in the mean level of 

the forecast errors is detected, it is difficult to discern, using this information, 

whether the deterioration is due to a change in level, slope, regression coefficient 

or seasonal pattern or if it is caused by several of these changes occurring in the 

same period.  

b) It does not eliminate earlier interventions when subsequent evidence against 

them comes to light. For this reason the final obtained models tend to be very 

non parsimonious. 
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c) The default form of intervention, even though it can be effective from a 

predictive viewpoint, it may not be the most adequate because it does not take 

into account the model components which have been responsible for the detected 

deterioration. In addition, from an explanatory point of view, this kind of 

intervention does not provide an explicit estimation of the intervention effect. 

In this paper we consider all these aspects and propose an algorithm based on the 

comparison of the standard model with a family of alternative models similar to that 

considered in De Jong and Penzer (1998), which incorporate in their expression the 

possible interventions to be made. Furthermore, the proposed procedure reflects the 

uncertainty associated with the model comparison and selection process in the spirit of 

Occam's window proposed in Madigan and Raftery's paper (1994) and the Multi-

Process Models of West and Harrison (1997). 

The above family is very general and it easily incorporates a great number of 

different types of possible interventions to be monitored into the model. In addition, we 

also provide a reasonable way of building the prior distributions of the intervention 

parameters by using the information available at each instant. Needless to say, the 

algorithm is flexible enough to allow the analyst to incorporate his opinions so that he 

can actively intervene in the process of decision making.  

The rest of this paper is organised as follows. The Linear Gaussian State Space 

model considered in the paper and the monitoring and intervention process proposed by 

WH are both described in Section 2. The proposed automatic monitoring and 

intervention algorithm is considered in Section 3. Section 4 is devoted to an application 

of the proposed methodology through an analysis of four empirical examples taken 

from the literature. Finally, Section 5 closes the paper with a review of the main 

conclusions. The mathematical proofs of the results derived from the paper are relegated 

to an Appendix. 

 

2. Establishing the problem 

Before presenting the model we first introduce a notation that we will be used 

throughout the paper. From here on, 0a denotes the ax1 null vector, 1a denotes the ax1 

vector with all its components being 1, ia,b denotes the ax1 vector with its bth-component 

being 1 and the rest being 0,  Ia denotes the axa identity matrix and, finally, 0axb denotes 
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the axb null matrix. Finally Np(m,A) is the p-multivariate normal distribution with 

vector mean m and covariance matriz A and G(p,a) the gamma distribution with mean 

p/a.  

 The Model 

Let Y = {Yt, t = 1,..,T} be a univariate time series, and ∀t let Dt = {Yt, Dt-1} be the 

available information in period t. 

The model considered in this paper is the linear gaussian state space model given 

by the following expressions: 

Observation equation:   Yt = '
tF θt + vt                vt ∼ N(0, V)   (1) 

Evolution equation:       θt = Gtθt-1 + wt             wt ∼ ( )*
tpp VW,0N

tt
                       (2)                

Initial information:      (θ0 | D0, V) ∼
0pN (m0, V *

0C ) (3) 

      ( )0D|φ  ∼ 








2
Sn

,
2

n
G 000   where   

V
1

=φ   (4) 

where {θt (ptx1); t=0,..,T} denotes the state vectors containing the systematic 

components of the series evolution (trends, seasonalities, cycles, regression coefficients, 

etc); {Ft (ptx1); t=1,...,T} and {Gt (ptxpt-1); t=1,...,T} are known matrices, called the 

regression and evolution matrices of the model, respectively, and they are determined 

by those components (see examples further down and WH, Chapter 5 for more details); 

{vt, t=1,…, T} (called observational errors) and {wt, t = 1,.., T} (called evolution errors) 

are internally and mutually independent, and independent of the prior distributions  (θ0 | 

D0, φ) and ( )0D/φ ; and m0, *
0C , n0, S0 are known constants and matrices determined by 

the analyst's information on the initial period t=0. 

Estimating the model: the Kalman filter 

The estimation of the state parameters of the model (1)-(4) is carried out in a  

Bayesian sequential way by using the recursive equations given in Theorem 1 which 

constitute the so-called Kalman filter, which enables us to recursively obtain the 

posterior distributions of θt.  
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Theorem 1.- In the model (1)-(4), if the posterior distribution (θt-1 | Dt-1,V) is N(mt-

1,V *
1tC − ), the one-step forecast and the posterior distribution conditional on V are given, 

for each t, as follows:  

Prior for θt :  (θt | Dt-1,V) ∼ ( )*
ttp VR,aN

t
 with 1ttt mGa −=   and *

t
'
t

*
1tt

*
t WGCGR += −  

One-step forecast: (Yt | Dt-1,V) ∼ N(ft, V *
tQ )   with ft = '

tF at  and t
*
t

'
t

*
t FRF1Q +=  

Posterior for θt : (θt | Dt,V) ∼ 
tpN (mt, V *

tC ) with mt = at + Atut and *
t

'
tt

*
t

*
t QAARC −=   

where  At = *
tt

*
t Q/FR   and  ut = yt – ft 

Distribution for φ = V-1: ( )1tD/ −φ  ∼ 






 −−−

2
Sn

,
2

n
G 1t1t1t  

 ( )tD/φ  ∼ 








2
Sn

,
2

n
G ttt  

where nt = nt-1 + 1 and 









+= −− *

t

2
t

1t1t
t

t Q
u

Sn
n
1S  . ■  

Remark 1.-  

a) There are recursive algorithms to carry out the construction of the predictive 

distributions Yt+k|Dt k ≥ 1 as well as the calculation of the retrospective posterior 

distributions θt|DT t ≤ T. The details of these algorithms can be seen in WH, 

Chapter 4, Section 4.7. 

b) If the hypothesis of normality is removed the above mentioned expressions give 

rise to the best Linear Bayes’ estimators of {θt; t=1,...,T} under quadratic loss 

(see WH,  Section 4.9).  

c) The covariance matrices of the evolution equation { } T,...,1t;W *
t =  are usually 

unknown and very difficult to determine. WH propose estimating them from 

{GtCt-1
'
tG ; t=1,...,T} (see Theorem 1 for the expression of Ct) by using discount 

factors, 0 < γm,t ≤ 1, that quantify the loss of information produced in relation to 

the different components of the parameter vectors {θt ; t=1,...,T} when passing 

from one time period to the next, in such a way that, the more close to 0 (resp. to 
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1) are its values, the bigger (resp. smaller) is the loss of information and the 

smaller (resp. bigger) is the influence of the more remote observations in the 

estimation of θt. ■ 

Monitoring and Intervention 

An important aspect of the WH’s methodology consists of the monitoring and 

intervention process which assess, in a sequential way, the adequacy of the model (1)-

(4) to the series observed data, in order to incorporate feed-forward or feed-back 

interventions if needs be. The feed-forward interventions are anticipatory and 

subjective, in nature, and they allow the analyst to incorporate information in the model 

from outside the domain of the data. WH show, in their Chapter 11 how to carry out 

these kinds of interventions keeping up the structure of the model equations (1)-(4). 

However, interventions are usually retrospective, that is to say, they are carried out 

when inadequacies of the model to the more recent observations are detected. In order 

to carry out this monitoring process, WH use the most recent one-step forecast errors {ui 

; i=r,...,t} 1≤r≤t≤T which are calculated by using the expressions given in Theorem 1. 

The mathematical tool taken by WH is the Bayes' factor for model M0 versus model MA 

and it is given by:  

  ( ) ( )
( )A1rt1rr

01rt1rrM
M M,D/u,...,u,uP

M,D/u,...,u,uP
t,rBF 0

A
−+

−+=  (5)  

where M0 is the standard model subject to continual assessment, MA is an alternative 

model that is introduced to analyse the existence of some kind of deterioration, 

P(ur,ur+1,…,ut | Dr-1, Mi) is the predictive density of the one-step ahead forecast errors 

ur,ur+1,…,ut obtained from model Mi with i ∈ {0,A}, t is the current period and r is the 

period in which model M0 is suspected to have experienced the shock described by the 

alternative model MA. WH calculate )t(BF 0

A

M
M = min1≤r≤t ( )t,rBF 0

A

M
M  and they establish a 

threshold 0<τ<1 in such a way that if )t(BF 0

A

M
M ≤ τ they conclude that the analysed 

deterioration is significant, so the need for some form of intervention is paramount.  

Taking into account that  

( ) ( )
( )A1rt1rr

01rt1rrM
M M,D/e,...,e,eP

M,D/e,...,e,eP
t,rBF 0

A
−+

−+=  
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where












==
−

 t,...,ri;
QS

u
e 

*
i1i

i
i  are the standardised one-step ahead forecast errors of 

the model M0, the standard model used by WH is {ei; r,...,t} IID N(0,1) and the 

alternative models are M1:{ei; r,...,t} IID N(µ,1); M2:{ei; r,...,t} IID N(-µ,1) and M3:{ei; 

r,...,t} IID N(0,k) with µ>0 and k > 1, in order to detect mean and/or variance changes 

in the model. They also propose to reduce the discount factors of the model components 

γm,t with the aim of making the model more adaptive to new observations.  

As we have already mentioned in the Introduction, in our view this procedure 

suffers from the drawbacks a), b) and c). In order to alleviate these, in the following 

Section we propose a new monitoring and intervention algorithm. 

 

3. Algorithm of Simultaneous Detection of Several Shock Types  

The basic idea of the proposed algorithm consists in considering an alternative family 

of models more general than that used by WH, which incorporates in their expression the 

possible interventions to be analysed and also facilitates the recursive calculation of the 

Bayes' factors (5).  

Description of the family of alternative models 

The family of alternative models is similar to that considered in De Jong and Penzer 

(1998) and is given by the following equations: 

Observation equation:   Yt = '
tF θt + '

tX δ + vt vt ∼ N(0, V)  (6)  

Evolution equation:  θt = Gtθt-1 + Htδ + wt wt ∼ ( )*
tpp VW,0N

tt
   (7) 

Initial information: (θ0 | D0, V) ∼ 
0pN (m0, V *

0C )  (8) 

 (δ | D0, V) ∼ ( )*
0

*
0s Vq,N λ   (9)   

 ( )0D|φ  ∼ 








2
Sn

,
2

n
G 000   φ=V-1  (10)  

with observational errors {vt, t,…, T} and evolution errors {wt, t = 1,.., T} internally and 

mutually independent, and independent of (θ0 | D0, V), (δ | D0, V) and ( )0D|φ ; m0, *
0C , 
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n0, S0, *
0λ , *

0q ,{ } T,...,1t;W *
t =  are known constants and matrices given by the standard 

model (1)-(4) and δ (sx1) is a vector of shocks which affect the observation and the 

evolution equations. The effect of these shocks depends on matrices {Xt sx1-matrix, t = 

1,…,T} and {Ht ptxs-matrix, t = 1,…,T}, which are called the shock design matrices. 

The shock magnitude is determined by the s components of the vector δ. By specifying 

these matrices, it is possible to model different types of deterioration that can affect the 

evolution of the time series Y. Let us give some examples. 

Example 1.- In a local linear trend model given by: 

 Yt = '
tF θt + vt            with  vt ∼ N(0, V)                  

  θt = Gtθt-1 + wt           with wt ∼ ( )*
t22 VW,0N                      

 where 







β
µ

=θ







=








=

t

t
ttt  ,

10
11

G ,
0
1

F , µt is the current level and βt is the current 

slope of the series Y at time t. 

• A single outlying value at time j can be modelled by taking: 

  s=1, 




≠
=

=
j        t 0
j        t1

Xt  and Ht = 02 ∀t   

• A level change at time j can be modelled by taking:  

  s=1, Xt = 0   ∀t   and   




≠

=
=

j      t 
j    t

H
2

2,1
t 0

i
  

• A slope change at time j can be modelled by taking: 

  s=1, Xt = 0   ∀t     and    




≠

=
=

j       t 
j     t

H
2

2,2
t 0

i
  

• A level and slope change at time j can be modelled by taking: 

  s=2, 2tX 0=  ∀t  and 




≠
=

=
j      t 
j         t

H
2x2

2
t 0

I
. ■  

Example 2.- In a form-free seasonal effects model (see WH Section 8.4) where 

'
tF =(1, '

1p−0 ), Gt = 






 −
'

1-p

1p1-p

1
I
0

0
, *

tW 1p = 0p and the state vector θt  verifying '
p1 θt = 0 ∀t, 
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a change in the seasonal pattern at time j can be modelled by taking s = p-1, Xt = 0p-1   

∀t  and  










≠

=














=

j       t 

j      t
-

 

H

1)-px(p

'
1-p

1-p

t

0

1

I

 where -1p-1 is a  (p-1) x 1 vector with all its components 

being ( –1). ■  

Example 3.- In a dynamic regression linear model given by: 

 Yt = '
tF θt + vt         with   vt ∼ N(0, V)                 

  θt = θt-1 + wt           with wt ∼ ( )*
t22 VW,0N                      

where )'X,...,X(F ptt1
'
t =  are the explanatory time series and ( )'

ptt1
'
t ,...,ββ=θ  are the 

regression coefficients; a change in the regression coefficient of the kth explanatory 

variable on period j can be modelled by taking:  

 s=1, Xt = 0   ∀t   and   






≠

=
=

j      t 

j    t
H

p

kp,
t 0

i
. ■  

Remark 2.- Note that the model (6)-(10) is perfectly adapted to the modelling 

principle by superposition of components described in WH, Chapter 6, Section 6.2. It is 

possible to model shocks affecting to each one of the model components by choosing 

the matrices Xt and Ht in an appropriate form. In this way, for example, in a model 

constructed by the superposition of a local linear trend model (example 1) and a form-

free seasonal effects model (example 2) it is possible to analyse shocks that affect to the 

model trend or to the model seasonality separately adapting, in an appropriate way, the 

form of the matrices Xt  and Ht described in the examples 1 and 2. ■  

Calculating the Bayes' factor 

Once the alternative model has been described, in this Sub-section we calculate the 

Bayes' factor (5) taking the model given by (1)-(4) as the standard model M0 and the 

model given by (6)-(10) as the alternative model MA.  

The following Theorem, the proof of which is contained in the Appendix, obtains 

the distribution of the one-step ahead forecast errors {ui;i=1,...,t} calculated by way of 

the standard model M0 given by (1)-(4), when the model MA, given by (6)-(10), is the 

Data Generating Process (DGP).  
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Theorem 2.- If the model MA defined by (6)-(10) is true, then the distribution 

conditional on V of the one-step ahead forecast errors ut will be given by: 

(ut  | Dt-1, V, MA, δ) ∼ N( '
tx δ, V *

tQ )    with '
t

'
t

'
t grx −=   t ≥ 1 

where '
tt

'
t

'
t XdFr +=  with 





=
≥+

= −

0  t if             
1 tif   HdG

d
xsp

t1tt
t

0
0

 and




=
≠

=
1 tif      
1 tif     bF

g
1xs

t
'
t'

t 0
  

with 




=
≠

= −

1 tif      
1 tif  cG

b
xsp

1tt
t

t
0

and ct = bt + At( '
tr  – '

tg ) where *
tQ  and At are given in 

Theorem 1. ■  

Remark 3.- Note that the existence of a shock δ causes a bias '
tx δ in the one-step 

ahead forecast errors of the standard model ut = Yt – ft in relation to the value predicted 

with the standard model. This bias is calculated from '
tr , the effect of the shock in Yt 

and from '
tg , the effect of the shock on the prediction. ■  

In order to calculate the Bayes' factor (5), the following Theorem gives the 

predictive densities for one-step ahead forecast errors under M0 and MA, respectively.  

Theorem 3.- Let 1 ≤ r ≤ t ≤ T.  

a) If DGP is M0 given by (1)-(4) then, it is verified that: 

 ( ) 2
n

 
tt2

n

1r1r

1r

t2/1t

ri

*
i01rt1rr

t1r

2
Sn

2
Sn

2
n

2
n

Q2M,D|u,...,u,uP
−

−−

−

−

=

−+ 























Γ








Γ











π=

−

∏  

 where *
iQ  is given in Theorem 1,














+= ∑

=

j

1i
*
i

2
i

00
j

j Q
u

Sn
n
1S with  nj = n0 + j  (11)  

b) If DGP is MA given by (6)-(10), then it is verified that:  

 

( )
2

n
 *

tt
2

n
*

1r1r

1r

t2/1

*
1r

*
t

2/1t

ri

*
iA1rt1rr

t1r

2
Sn

2
Sn

2
n

2
n

q

q
Q2M,D|u,...,u,uP

−

−−

−−

−

=

−+ 























Γ









Γ

























π=

−

∏
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 with  

 ( )












+λ=δ=λ ∑
=

−
j

1i
*
i

ii*
0

1*
0

*
jAj

*
j Q

u'x
 q qM,D,V|E   (12) 

 ( )
1j

1i
*
i

ii1*
0Aj

*
j Q

x'x
qM,D,V|Vq

−

=

−













+=δ= ∑  (13) 

 ( )*
j

1*
j

*'
j

*
0

1*
0

*'
0jj

j

*
j qqSn

n
1S λλ−λλ+= −− ;       j=0,...,T (14) 

where nj and Sj are given in (11). ■  

Using this Theorem, the following Corollary is easily obtained. 

Corollary 1.- Let 1 ≤ r ≤ t ≤ T. If M0 and MA are given by (1)-(4) and (6)-(10), 

respectively, then it is verified that: 

  ( )
2

n

*
1r1r

1r1r
2
n

tt

*
tt

2/1

*
t

*
1rM

M

1rt

0

A Sn
Sn

Sn
Sn

q

q
t,rBF

−






























=

−−

−−−     (15) 

where nj and Sj, *
j

*
j S and q  are defined in (11), (13) and (14), respectively. ■  

Remark 4.-  

a) Note that from (11), (12), (13) and (14) it is verified that:  

*
j

2
j

1j1jjj Q

u
SnSn += −− ; *

j

jj1*
1j

1*
j Q

x'x
qq += −

−
− ; 

  *
j

jj*
1j

1*
1j

*
j

1*
j Q

u'x
qq +λ=λ −

−
−

−  ; *
j

1*
j

*'
j

*
0

1*
0

*'
0jj

*
jj qqSnSn λλ−λλ+= −−  

in such a way that, this latent recursivity simplifies the calculation of the Bayes' 

factor (15).  

b) In the algorithm described in Sub-section 3.3 and in the examples analysed in 

Section 4, the alternative model set considered in order to carry out the 

monitoring and intervention process typically consists of models given by (6)-

(10) with {Xv = 01xs ; Hv = xspv
0 ; v<r} (see examples 1, 2 and 3 in Sub-section 

3.1). In these cases, the Bayes' factor expression (15) is simplified to: 
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2
n

tt

*
tt

2/1

*
t

*
0

t

Sn
Sn

q

q
























 

thereby reducing the computational effort of the algorithm. ■  

Our aim is to build a procedure that jointly analyses the existence of both outliers 

and structural changes. In order to do so, the following Sub-section provides an 

algorithm to carry out this task. 

 The Algorithm 

The algorithm is based on the comparison of the standard model with a set of 

alternative models given by expressions (6)-(10) that are constructed in order to analyse 

the existence of possible deteriorations in the standard model described by the design 

matrices Xt and Ht. The comparison is carried out in a sequential way by means of the 

Bayes' factor (15) determining, in each period, which interventions must be 

incorporated into the model and which must be removed from it. The process ends with 

a search for a parsimonious model representation, once all the series observations have 

been analysed. 

Following the philosophy of changing only those aspects which need to be 

changed, we will choose the design matrices Xt and Ht in accordance with those aspects 

of the model that the analyst wants to monitor (trend level, trend slope, seasonal pattern, 

regression coefficient, etc.). Furthermore, we will specify the period tl∈{1,...,T} from 

which it is estimated that the intervention should be incorporated into the model.  In this 

way, each possible intervention will be given by a couple l= (il,tl) where il is the type of 

intervention (isolated outlier, level change, slope change, etc). When this intervention is 

incorporated into the standard model, it gives rise to an alternative model Ml given by 

(6)-(10) where {Xt = 0s and Ht = xspt
0  t ≤ tl-1} and the matrices {Xt, Ht; t=tl,...,T} are 

determined by the type of intervention il. The examples 1 to 3 given in Sub-section 3.1 

are particular cases of this kind of models. 

The algorithm consists of four steps: i) Start, ii) Location and incorporation of the 

interventions to be carried out, iii) Elimination of earlier interventions and iv) Search for 

a parsimonious model representation. We will now offer a detailed description of each 

step, using the following terminology: 
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Let OI be the types of ordinary interventions whose existence the analyst wishes 

to monitor continually. These types of interventions allude to possible model 

progressive deteriorations due to the existence of shocks which affect one, or several, 

model components; and they are not usually revealed by abnormally high standardised 

errors. 

Let EI be the types of extraordinary interventions which the analyst considers 

can be feasibly employed when the more recent standardised one-step forecast error et is 

great. Typically EI = OI ∪ {isolated outlier}. 

Let DI be the set of doubtful interventions, i.e. interventions which suggest that 

their inclusion in the model seems to be advisable but which are waiting for the 

accumulation of evidence that will allow the monitor to discern whether they have to be 

incorporated into the model or, alternatively, have to be completely removed. 

Finally, let FI be the set of fixed interventions, i.e. interventions incorporated into 

the standard model at a particular moment in time, but with the possibility of being 

removed if evidence is accumulated against them. 

Furthermore, we will need to specify the following elements: 

rmin:  minimum number of observations necessary in order to make the decision of 

whether to turn a doubtful intervention into a fixed intervention.  

emin: minimum error used to detect single outliers. 

tmin:  initial number of observations that the analyst remove, in order to reduce the 

effect of the prior distribution. 

and the following thresholds: 

τ1:  threshold to decide if an intervention is to be removed.  

τ2:  threshold to decide if a doubtful intervention is to be incorporated into the 

model as a fixed intervention. 

τ3:  threshold to carry out the parsimony step in which fixed interventions that are 

not significant enough are removed. 

With these elements, the automatic monitoring and intervention algorithm is 

comprised of the following steps: 

Step 1: START 
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The initial standard model given by (1)-(4) is established to describe the observed 

series evolution and is denoted by M0. In addition, we specify OI, EI as well as the 

parameters tmin∈{1,...,T}, rmin∈N, emin ≥0 , τ1∈[0,1], τ2∈[0,1], τ3∈[0,1].   

In order to reduce the effect of the prior distribution, apply the Kalman filter during 

the first tmin observations. After this learning period, set DI = {(i,tmin): i∈OI}, FI = ∅ 

and t = tmin. Go to Step 2. 

Step 2: LOCATION AND PROCESSING OF DOUBTFUL INTERVENTIONS 

In this step, we calculate the possible interventions to be carried out in each period 

of time t. These interventions can be either due to the appearance of an unusually large 

standardized one-step ahead forecast error et (extraordinary interventions) or to the 

onset of a new ordinary intervention that replaces one that has been eliminated earlier. 

In addition, the doubtful interventions which are incompatible with the available data 

are removed and the necessity of incorporating some doubtful interventions into the 

model is analysed. An intervention l is incorporated into the model if it significantly 

improved the standard model and, furthermore, if it is supported by a number of 

observations larger than or equal to rmin. The steps to be carried out are as follows: 

a) Location of extraordinary interventions. 

 If |et | ≥ emin  set  DI = DI ∪{(i,t): i∈EI}.   

b) Ordinary interventions that have to be removed. 

 Set *OI  = {il∈OI :l=(il,tl)∈DI and ( )t,tCBF 0M
M ll

> τ1 }.  

c) Elimination of doubtful interventions. 

 Set DI = DI - {l∈DI: ( )t,tCBF 0M
M ll

> τ1} . 

d) Updating of ordinary interventions. 

 Set DI =  DI∪ {(i,t+1): i∈ *OI }. 

e) Analysis of the need to incorporate a new fixed intervention. 

 Calculate lmin∈DI, such that  

( ) ( )t,tCBFmint,tCBF 0
*min

0

min

M
MDI

M
M lll ll ∈

=  
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 where *DI  = DI - {l∈DI: tl-t > rmin }.   

 If ( )t,tCBF
min

0

min

M
M ll

 < τ2,  then  

  FI = FI ∪ {lmin}, DI=DI-{lmin}  

  Set M0 = 
min

M l and repeat Step 2; 

 otherwise go to Step 3.   

Step 3: PROCESSING OF FIXED INTERVENTIONS.  

In this step, interventions previously incorporated into the standard model are 

examined in order to analyse if it is possible to eliminate some of them. It consists of 

the following stages:  

a) Analysis of the need to eliminate a fixed intervention. 

Calculate lmax∈FI, such that 

( ) ( )t,tCBFmaxt,tCBF M
MFI

M
M 0max

max

0 lll
ll −−

∈=  

where M-l denotes the model which eliminates the intervention l from the 

standard model.   

If ( )t,tCBF
max

max

0

M
M l

l−  ≥  τ1 then FI = FI - {lmax} and set M0 = 
max

M l− . Go to 

Step 2. 

b) Processing of a new observation. 

Set t = t +1 and calculate the standardised one-step ahead forecast error et by 

means of the Kalman filter. If t < T then, go to Step 2; otherwise go to Step 4. 

 

 

Step 4: SEARCH FOR A PARSIMONIOUS MODEL REPRESENTATION.  

Once all the observations of the series have been processed and, in order to build a 

parsimonious model, repeat Steps 2 and 3 with t = T until FI does not change. In Step 3 

the threshold τ3 is used instead of τ1 where the threshold τ3 is chosen in order to obtain 

parsimonious models. The resultant standard model is the selected model. 
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Remark 5.-  (Choice of the elements rmin, emin, tmin and the thresholds τ1, τ2, τ3 ) 

a) It is important to choose rmin >1 given that with only one observation it is 

impossible to distinguish the type of the intervention to be carried out (it can be 

either an outlier, the onset of a level change, the onset of a seasonal pattern 

change, etc). On the other hand, it is not desirable to choose too large a value, 

due to the need to incorporate the intervention as soon as possible. Our advice is 

to take rmin equal to the maximum of the dimensions of the parameter vectors δ 

associated to the types of interventions that the analyst wishes to monitor, with 

the aim of having at least one observation for each component of δ.  

b) emin is the parameter which determines the introduction of the doubtful 

extraordinary interventions. In our examples we have taken emin = 1.645 with the 

aim of having, roughly, a 10% of probability to incorporate doubtful 

interventions without need. 

c) The value of tmin depends on the number of the dynamic parameters of the 

standard model. If the prior distribution is improper tmin would take a value 

larger than or equal to this number with the purpose of starting the algorithm 

with a proper posterior distribution of these parameters. In our examples, we 

have taken tmin equal to p0 +1 in order to have al least one observation per 

parameter. 

d) Given that incorporating an intervention makes the standard model less 

parsimonious, a sensible choice of the threshold τ1 is 1 (this value is used by 

WH or by Madigan and Raftery (1994)). The threshold τ2 determines when an 

intervention has to be incorporated, that is to say, when it is significant enough. 

The Bayesian literature (Jeffreys (1961), Madigan and Raftery (1994), Kass and 

Raftery (1995)) advises to take values between 0.01 and 0.10. Some simulations 

described in Gargallo and Salvador (2002) suggest to take τ2 = 0.05 if a level 

significance of 5% is desirable and τ2 = 0.01 if a level significance of 1% is 

desirable. In the practical cases we describe later in the paper, we have taken τ2 

= 0.05 which is also the value advised by Madigan and Raftery (1994).  

e) The threshold τ3 is used in Step 4 of the algorithm. This Step is only 

implemented to obtain a parsimonious model.  In our empirical examples, we 
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have taken τ3 = 1/3, that is to say, the advised value in Kass and Raftery (1995) 

p. 777. ■  

Remark 6.- (Choice of prior parameters *
0

*
0 q and λ ) 

Given that the standard model is initially true, a sensible choice of  *
0λ would be 0s. 

The value of *
0q  would be determined by the model components which are affected by 

the intervention and the period t in which this intervention is carried out. A logical 

choice would be to take *
0q  equal to the block of the prior variance matrix, *

tR , given in 

Theorem 1, corresponding to the components of the state vector that are affected by the 

shock, except if the shock is an outlier; in which case we would take *
0q  = *

tQ . ■  

Remark 7.- In the spirit of Madigan and Raftery (1994), the class of the alternative 

models corresponding to the doubtful interventions together with the standard model 

constitute the Occam's window which give rise to one mixture of models with posterior 

probabilities proportional to the corresponding Bayes' factors and which could be used 

to make predictions and to take decisions. This possibility has not been explicitly 

explored in this paper but it will be studied in future papers. ■  

Selective Automatic Intervention 

If the algorithm detects that a shock has taken place, the intervention method is 

determined by the equations of model MA corresponding to this shock. The new 

standard model will be given by the equations:  

*
t

*
t

*
tt vFY +θ
′

=  

*
t

*
1t

*
t

*
t wG +θ=θ −  

 where  X,FF tt
*
t 





 ′′=

′
, t

*
t vv = , 








=








=

− s

t*
t

ssxp

tt*
t 0

w
 w, 

I0
HG

G
1t

 and 







δ
θ

=θ t*
t .  

Thus, the structure of the equations (1)-(4) is maintained, and it is possible to apply 

Theorem 1 in order to carry out the on-line estimation of the parameters, as well as, to 

use the algorithms described in WH, Chapter 4 for the calculation of the predictive 

Yt+k|Dt k≥1 and the retrospective θt|DT t≤T distributions. 
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4. Empirical Illustrations 

In this Section we illustrate the use of the proposed algorithm by analysing four 

empirical time series taken from the literature. In the considered data sets we have 

applied the following procedures:  

i) The Kalman filter without carrying out any monitoring and intervention process, 

i.e., by using the equations provided in Theorem 1. 

ii) The proposed algorithm with emin = 1.645, τ1 = 1, τ2 = 0.05 and τ3 = 1/3 (denoted 

by GS monitor from here on). 

iii) The algorithm proposed by WH in Chapter 11 (described by ourselves as WH 

monitor) in order to monitor mean and variance changes of the standardized one-

step ahead forecast errors. The values adopted in this study have been h =1.5, k 

= 4 and τ = 0.05, which correspond to a significance level of approximately 5%, 

and are the values that gave the best results in the simulations carry out by  

Gargallo (2001) and Gargallo and Salvador (2003). WH propose to intervene in 

the model by decreasing the discount factors of its parameters, with the aim of 

making it more adaptive to the most recent observations. In our case, whenever 

the monitor detects a change, we take δm,t = 0.1 as the discount factor for the 

parameters of the trend and the seasonality, δm,t = 0.8 for the regression 

coefficient and δv,t = 0.9 for the observational variance.   

These procedures are numerically compared by using: 

 MAD = ∑
+=

−

T

1tt
t

min
min

u
tT
1  

 RMSE = ∑
+=

−

T

1tt

2
t

min
min

u
tT
1  

as measures of the model predictive performance and  

 LLF = ( )∑
+=

−−

T

1tt
1tt

min
min

DYplog
tT
1  

as a measure of goodness of fit, where ut = Yt - E[Yt|Dt-1] is the one-step ahead forecast 

outsampling error.  
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This numerical analysis has been completed by the elaboration of graphics that 

compare the one-step forecast, ft = E[Yt|Dt-1], obtained by each procedure, with the 

observed values of the series, accompanied, in each case, by their Bayesian 99% 

predictive confidence intervals ft ± *
t1t

1t

1t
n QS

)2n(
n

)005.0(t
1t −

−

−

−−
 where )(t

1tn α
−

 

denotes the 1-α/2 quantile of a central Student t distribution with nt-1 freedom degrees 

and ft, nt, St and *
tQ  are given in Theorem 11. In these graphs we have marked the 

incorporated interventions by vertical lines that indicate the moment in which these 

have taken place, and their type. Thus, the form of the line indicates the intervention 

type (unbroken line: outlier; dotted line: level change; dashed line: level and slope 

change; dashed and dotted line: other changes (slope, seasonal or regression coeficient 

change), whilst the colour indicates if there have been one (black line) or several (grey 

line) interventions located in the same period. Finally, and given that the monitoring 

algorithm of WH does not distinguish the type of shock detected, the corresponding 

graphics only reflect the instant at which the change is detected and the intervention 

applied. 

Level of Lake Huron 

This series has been analyized by Brockwell and Davis (2002) and provides the 

annual level in feet of Lake Huron (reduced by 570) in the years 1875-1972. These 

authors (considering various models) fit a model with constant linear trend (see Figure 

2) given by the equations:  

Yt = 10.091 -0.0216t + ut    

(0.463)          (0.008) 

where ut follows a AR(2) process. With the aim of analyzing the possible existence of 

changes in the trend of the series, we fit a model with linear local trend  (Ft = 







0
1

 ; Gt = 









10
11

 ∀t) with discount factors equal to 1 and prior distribution given by (3) and (4) 

                                                           
1 We also analysed the behaviour of the standardised one-step ahead forecast errors et = 

( )1tD|tuVar
tu

−
. The results are not shown for the sake of brevity. 
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with m0 = (11,0)’, C0 = I2, n0 = 1 and S0 = 1. This prior distribution is quite diffuse, in 

such a way that it hardly affects the results described hereafter. We have applied the 

algorithm described in the previous Section in order to analyze the possible existence of 

single outliers, changes in level and joint changes in level and slope. Furthermore, in 

order to implement the monitor we have taken the parameter values indicated in ii) and 

rmin = tmin = 3. The results obtained are set out in Tables 1 and 2 and in Figures 1, 2 and 

3. 

We can observe (see Table 1) that the GS monitor achieves the best results in all 

three criteria considered in the paper. This monitor detects the existence of a change in 

the level and slope of the trend in 1942 and 1943, as well as two outliers in 1929 and 

1964, with the second of these two corresponding to the minimum historical level of the 

water in that lake (see Figure 1).  The obtained model estimates that until 1942 the trend 

comes given by : 

Yt = 10.824 -0.0476t + ut 

(0.222)         (0.008) 

and, from 1943 onwards, by:  

Yt = 8.071 -0.0094t + ut 

(0.150)         (0.007)  

Therefore, we can appreciate a stabilization in the water level of the lake from 1943 

onwards (see Figure 2). Table 2 shows the estimated magnitude of these changes, and 

here we can note that all of them are significant at a 95% level. 

(Insert Figures 1 and 2 and Tables 1 and 2 about here) 

For its part, the WH monitor obtains better results than under the non-intervention 

approach (see Table 1). However, it intervenes in an excessive number of years (1891, 

1908, 1925, 1929, 1944, 1958, 1970, see Figure 1) and, as a consequence, it fits a less 

parsimonious model, and one with a worse fit under the 3 criteria, than the model fitted 

by the GS monitor. This is essentially due to the fact that, in its implementation, the WH 

monitor does not incorporate a similar step to the 3 and 4 steps of the GS algorithm, 

which analyse for whether the interventions incorporated at earlier moments in time to 

the current one continue to be significant. As can be appreciated from Figures 2 and 3, 

almost all the interventions made by this monitor correspond to changes in the level 
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and/or slope of the trend that are of only limited significance, given that the confidence 

bands overlap both prior to and following each change. The only significant 

intervention is that made in 1944 and which corresponds, in general terms, to that made 

by the GS monitor. 

(Insert Figure 3 about here) 

 Series CP6 

This series has been analyized by WH (Chapter 11) in order to illustrate how to 

carry out feed-forward interventions and provides the monthly total sales, in monetary 

terms, of tobacco and related products marketed by a major company in the UK. The 

data runs from January 1955 to December 1959, inclusive. Figure 4 shows a series trend 

as a sequence of roughly linear segments, with three major changes, namely in 

December 1955, January 1957 and January 1958 (see WH to obtain more information 

on these). In our case, we suppose that there is no prospective information and we will 

monitor the evolution of the series by applying the three procedures described earlier. 

The standard model we use is the same as that used in WH, that is to say, a model with 

linear local trend  (Ft = (1,0)' ; Gt = 







10
11

 ∀t) and with the same prior distributions 

and the same discount factors. We have applied the algorithm described in the previous 

Section in order to analyze the possible existence of single outliers, changes in level and 

joint changes in level and slope. Furthermore, in order to implement the monitor we 

have taken the parameter values indicated in ii) and rmin = tmin = 3. The results obtained 

are set out in Tables 3 and 4 and in Figures 4 and 5. 

We can observe (see Table 3) that the GS monitor achieves the best results in all 

three criteria considered in the paper. Thus, this monitor detects the most relevant 

changes (outlier in December 1955 and level changes in January 1957 and January 

1958); in addition, it detects a change in the level and in the slope of the series in 

August 1958 which allows it to follow the posterior evolution in a more accurate way 

(see Figure 4). Table 4 shows the estimated magnitude of these changes, and here we 

can note that all of them are significant at a 95% level. 

(Insert Figures 4 and 5 and Tables 3 and 4 about here) 

On the other hand, in spite of the fact that the WH monitor obtains better results 

than the non-intervention approach, and that it detects the changes that took place in 
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December 1955 and January 1957, it does not detect the changes produced in the series 

around 1958. This is due to the fact that the way of intervention of this monitor does not 

take into account the type of the change detected and intervenes in all of the model 

parameters. For example, the WH monitor detects a level change in January 1957 and, 

as a consequence, intervenes not only in the mean level but also in the slope and in the 

observational variance. This provokes an excessive increase of the uncertainty 

associated to the on-line estimation of the model parameters and, as a consequence, a 

greater width of the predictive bands of the model (see Figures 4 and 5). This increase 

diminishes the sensitivity of the monitor to possible changes, given that the standardised 

errors et = ( )1tD|tuVar
tu

−
 are artificially small. For this reason, the monitor does not 

detect, or detects too late, the changes produced throughout 1958, which results in a 

worse fit of the estimated model. By contrast, the GS monitor also detects this change, 

intervening in the mean level of the series but not in the rest of the parameters. This 

makes the monitor more sensitive to new changes and allows it to detect the level and 

slope change that took place in the middle of 1958. Therefore, the estimated trend 

follows the evolution of the series more accurately, providing a better fit to the data.   

This effect can also be seen in the retrospective estimations of the trend obtained by 

the smoothing algorithm described in WH Section 4.8 (see Figure 6), whose fit to the 

evolution of the series is worse than that estimated by the GS monitor and with wider 

confidence bands. 

(Insert Figure 6 about here) 

 Deaths and Serious Injuries in Road Accidents 

The third example concerns the logarithm of the monthly number of car drivers 

killed or seriously injured in the United Kingdom from January 1969 to December 1984 

and are taken from Harvey and Durbin (1986), who analysed this series to assess the 

effects of the UK seat-belt law by front seat occupants of cars which was made 

compulsory in February 1983. This data has been examined by many authors, such as 

Ng and Young (1990), Balke (1993) and Pole et al. (1994).  

From Figure 7 it is relatively easy to see the general features of this time series. 

There is an overall level trend that seems to be broken into three separate phases with 

breaks at the beginning of 1974 and at the beginning of 1983, and a pronounced 
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seasonal pattern that seems fairly consistent across the entire series. Within each of the 

segments 1969-1973, 1974-1982, and 1983-1984, the series exhibits apparently little 

movement in the trend and seasonal pattern. Therefore, we propose a model comprising 

a second-order polynomial model for the trend and a model with 12 form-free seasonal 

effects for seasonality, i.e., ∀t ( )'
1,12

'
1,2

'
t E,EF =  and Gt = diag(A,B) with A = 








10
11

 

and B = 







'
11

1111

1
I
0

0
where I11 is the 11x11 identity matrix and 011 is the 11x1 null 

vector. We use an initial diffuse prior distribution and we apply the monitoring and 

intervention algorithm, supervising the existence of outliers and changes in level and/or 

slope and in the seasonal pattern. We take tmin = rmin =12 and γm,t = 0.99 ∀t as discount 

factors, which presuppose a roughly constant evolution of the different model 

components. The obtained results are shown in Tables 5 and 6 and Figures 7 to 10. 

The best results again correspond to the GS monitor (see Table 5) that detects level 

and slope changes in October and November 1973, January 1975 and February 1983, a 

level change in January 1983, as well as an outlier in August 1976 (see Figure 7). In this 

way, it captures the change in trend caused by the oil crisis and the posterior 

stabilization of the trend from 1975 onwards, as well as the effect of the compulsory 

seat belt law introduced in January 1983. Table 6 shows the estimation of the magnitude 

of these changes; in particular, we can conclude that the seat-belt law reduced the 

number of injuries by around 7.75% and also produced a decrease of the monthly 

growth rate of about 0.06%. The incorporation of these interventions substantially 

improves the predictive behaviour and the goodness of fit of the model, as we can 

appreciate from the results given in Table 5. 

(Insert Figure 7 and Tables 5 and 6 about here)  

The WH monitor obtains slighly better results than non-intervention, and this in 

spite of the fact that it particularly detects the changes that took place at the end of 1973, 

as well as the effect of the introduction of the seat belt law in January 1983. The reason 

for a worse fit to the data is again due to the form of intervention. Figures 8 and 9 show 

the on-line estimations of the model trend and the seasonality. We can again clearly 

appreciate what we commented on earlier, that is to say, the confidence bands of the 

estimated seasonality are wider than those corresponding to the GS monitor, given that 
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the latter only intervenes in the trend. After each intervention, the confidence bands of 

these estimations increase to an excessive extent, which results in a decrease in the 

sensitivity of the monitor to new changes and a worse fit of the model to the data. 

(Insert Figures 8 and 9 about here) 

Finally, Figure 10 shows the retrospective estimations of the series trend obtained 

with the three procedures. We can see that the two monitors provide similar estimations 

in both components and that the estimated trend describes the evolution of the series 

more appropriately than does non-intervention. However, the width of the confidence 

bands of these estimations is less in the GS monitor, for the earlier-mentioned reasons. 

 (Insert Figure 10 about here) 

Commercial Sales in the Food Industry 

The third and last example corresponds to a dynamic regression model considered 

in WH (Section 10.3). The dependent series (Yt) is the monetary value of total monthly 

sales on a standardized, deflacted scale of a widely consumed and established food 

product in UK markets. The independent series (Xt) is a standardized compound 

measure constructed by the company concerned, based on market prices, production and 

distributions costs and related variables. The data runs over the full six years 1976 to 

1981 inclusive; thus, there are 72 observations. We have adopted a dynamic regression 

linear model with seasonal effects, such that ∀t ),1,X,1(F '
1t

'
t 10= , Gt = 








B

I2

12x2

2x12

0
0

 

where B = 







'
11

1111

1
I
0

0
. The parameters of the prior distributions and the discount 

factors of each component of the model are the same as those in WH. In the case of the 

GS monitor, we monitor the presence of outliers, changes in the intercept and in the 

regression coefficient, as well as changes in the seasonal pattern, taking tmin = 14 and 

rmin = 12.        

The results obtained are shown in Tables 7 and 8 and Figures 11 to 15. Table 7 

displays the values obtained for each criteria and each monitor. It confirms that the best 

results correspond to the WH monitor in the RMSE and MAD criteria, which, 

paradoxically, obtains the worst results in terms of the LLF criterion.  

(Insert Table 7 about here) 
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The explanation is again in the way of intervening. The WH monitor detects two 

changes in June 1977 and December 1980 (see Figure 11). However, given that it does 

not discriminate the type of change, it intervenes in all the model components (see, for 

example, Figures 12 and 13), thereby unnecessarily increasing the level of uncertainty. 

This decreases its sensitivity in detecting other changes, as well as the goodness of fit 

the model. In particular, the monitor does not detect the increase in the level that took 

place around May 1978, which the GS monitor manages to detect (see Figure 11), in 

such a way that the latter obtains a better goodness of fit of the model, given that it only 

intervenes in the component affected by this change (see Figures 12 and 13). Table 8 

shows the magnitude of the change, and here we can note that it is clearly significant. 

(Insert Figures 11, 12 and 13 and Table 8 about here) 

Figures 14 and 15 show the retrospective estimations obtained by the three 

compared procedures. We can observe that only the GS monitor captures the effect that 

the independent variable exerts on the dependent variable in a significant way (see 

Figure 15) and, more particularly, its decrease over time. This is due to the fact that, 

thanks to the intervention carried out, the regression coefficient is estimated with a 

higher precision than that obtained with non-intervention and with the WH monitor. In 

this last case, we can observe that the confidence bands are again too wide to draw any 

conclusion about this effect. 

(Insert Figures 14 and 15 about here) 

Discussion 

The 4 examples analyzed reveal that the monitor proposed in this paper has a 

capacity to detect changes similar to that of the WH monitor. The essential difference 

between the two lies in the way of intervening. The WH monitor, because it intervenes 

in all the model components, introduces excessively wide levels of uncertainty in the 

on-line estimation process of the parameters. This can cause a decrease in the monitor’s 

sensitivity for detecting new changes, given that the standardized one-step ahead 

forecast errors et are too small, as well as a worse goodness of fit  to the model due to 

the excessively wide out-sampling predictive bands.  
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It could be argued that this effect would be cancelled if the way of intervening were 

changed. However, it is not clear how this change should be carried out, given that the 

standardized one-step ahead forecast errors et are the only source of information of the 

WH monitor. Thus, it is difficult to determine whether the change has taken place in the 

trend, in the seasonality or in the regression coefficients of the model. The GS monitor 

does not suffer from these defects, because each intervention has an alternative model, 

given by (6)-(10), associated to it. This alternative indicates the way of intervening and, 

more particularly, what are the components in which we have to intervene, as well as 

how to estimate the magnitude of the changes that have taken place in the model. In 

addition, the algorithm allows us to retrospectively eliminate interventions that have 

little significance, which increases the parsimony of the fitted models and decreases the 

width of the out-sampling predictive intervals, thereby allowing us to take decisions in a 

more appropriate way.   

 

5. Conclusions 

In this paper, we have proposed a monitoring and intervention algorithm in 

univariate linear gaussian state space models, based on the comparison between the 

standard model, on the one hand, and alternative models that explicitly include the 

analysed interventions in their expression, on the other. Thus, we have transformed the 

monitoring process into a model comparison and selection problem. By doing so, the 

type of possible interventions is extended and it is possible to remove interventions 

previously made when the statistical evidence against them is sufficiently important and 

to estimate the size of the shocks that affect the series evolution. 

The proposed methodology has been illustrated by analysing four empirical 

examples taken from the literature that show the generality and flexibility of the 

method. The algorithm offers a monitoring power similar to that of the monitor 

proposed by WH Chapter 11 and, furthermore, allows us to make interventions more 

precise than the WH monitor, which results in a better goodness of fit of the model to 

the data. 

Although the proposed methodology has been applied to the analysis of univariate 

series, it is possible to extend it to the analysis of multivariate series that evolve in 

accordance with a linear state space models. The results of this extension will be 
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presented in a future paper. On the other hand, the methodology has been applied to 

univariate time series that evolve according to the linear state space model given by (1)-

(4). This model in particular, assumes that the observation error is homoscedastic. 

However, on some occasions (for example, in financial series) the analysed series is 

heteroscedastic. Future areas of research would be to extend the method so as to analyse 

this kind of series by providing the possibility of interventions in variance. 
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Appendix 

Hereafter and with the purpose of simplifying the notation we will suppose, without 

loss of generality, that the onset of the deterioration took place at the instant t-r+1=1. 

Before turning to the proof of the mathematical results presented in the paper, we will 

first consider the following notation: 

Let 0
tY  be the value that we would expect to observe in the series if the change had 

not been produced, i.e., if the DGP had been M0; let 0
tθ  be the value that we would have 

of the state vector if the DGP had been M0 and Ei(. | Dt-1, Mj) the expected value 

calculated applying the Kalman filter corresponding to the model Mi (i = 0,A) under the 

assumptions that the DGP is the model Mj (j = 0,A).   

In addition, we use a superindex i to represent the mean values of the distributions 

obtained by applying the Kalman filter corresponding to the model Mi and under the 

assumptions that the DGP is Mi  (i = 0, A), that is to say: 

 0
ta  = E0(θt | Dt-1, M0)    and     A

ta  = EA(θt | Dt-1, MA, δ) (A.1) 

 0
tf  = E0(Yt | Dt-1, M0)    and     A

tf  = EA(Yt | Dt-1, MA, δ)    (A.2)             

 0
tm = E0(θt | Dt, M0)       and     A

tm  = EA(θt | Dt, M1, δ)  (A.3) 
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Note that we do not use superindex to represent the mean value of the distributions 

obtained by applying the Kalman filter corresponding to the model M0 and under the 

assumptions that the DGP is MA, i.e.: 

 at  = E0(θt | Dt-1, MA, δ) (A.4) 

 ft  =  E0(Yt | Dt-1, MA, δ) (A.5) 

 mt = E0(θt | Dt, MA, δ) (A.6) 

Before demonstrating Theorem 2, we need the following four lemmas.  

Lemma 1.- If model MA given by (6)-(10) is true, it is verified that: 

 δ+θ=θ t
0
tt d   where dt = Gtdt-1 + Ht  ∀ t ≥ 1  and d0 = xsp0

0   (A.7) 

Proof.- The proof is made by induction. Using the previous notation, it is verified 

that: 

θ0 = 0
0θ  = 0

0θ  + d0δ 

that is to say, the result is true for t = 0 and, therefore, if we assume that the result is true 

for period t-1, then for period t we have:  

θt = Gtθt-1
 + Htδ + wt = Gt

0
1t−θ + Gtdt-1δ + Htδ + wt = 0

tθ  + (Gtdt-1+ Ht)δ = 0
tθ  + dtδ 

with dt= Gtdt-1+ Ht, in such a way that the proof is completed. ■  

Lemma 2.- If the model MA given by (6)-(10) is true, it is verified that: 

 δ+= '
t

0
tt rYY  being '

tr = '
tF dt + '

tX   ∀ t ≥ 1    (A.8) 

Proof.- From Lemma 1 it is easy to see that in period t we have: 

Yt = '
tF θt

 + '
tX δ + vt = '

tF 0
tθ  + '

tF dtδ + '
tX δ + vt = 0

tY + ( '
tF dt + '

tX )δ = 0
tY + '

tr δ 

with '
tr  = '

tF dt + '
tX , in such a way that the result is established. ■  

Lemma 3.- If the model MA given by (6)-(10) is true, it is verified that: 

 δ+= t
0
tt baa        δ+= '

t
0
tt gff      and    δ+= t

0
tt cmm   (A.9) 

being: 
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≠

=
=

− 1t    cG

1       t 0
b

1tt

xsp
t

t     with ct = bt + At( '
tr  – '

tg )  and  t
'
t

'
t bFg =   (A.10) 

where At is given in Theorem 1. 

Proof.- Using the previous notation and the results of Theorem 1 and Lemma 2, we 

have: 

a1 = E0(θ1 | D0, MA, δ) = E0(θ1 | D0, M0) = 0
1a = 0

1a + b1δ 

f1 = E0(Y1 | D0, MA, δ) = E0(Y1 | D0, M0) = 0
1f = δ+ '

1
0

1 gf  

m1 = E0(θ1 | D1, MA, δ) = a1 + A1 (Y1 – f1) = 0
1a  + A1( 0

1Y  + '
1r δ – 0

1f - δ'
1g ) = 0

1m  + c1δ 

and so the result is true for t = 1. Then, if we suppose that at time t-1 the result is true, it 

follows that: 

at = E0(θt | Dt-1, MA, δ) = Gtmt-1 = Gt( 0
1tm − + ct-1δ) = 0

ta  + btδ 

ft  = E0(Yt | Dt-1, MA, δ) = '
tF at = '

tF  ( 0
ta  + btδ) = 0

tf  + '
tg δ 

mt = E0(θt | Dt, MA, δ) = at + At(Yt – ft) = 0
ta + btδ + At( 0

tY + '
tr δ – 0

tf – '
tg δ) = 0

tm  + ctδ 

This establishes (A.9). ■  

Lemma 4.- If the model MA given by (6)-(10) is true, it is verified that: 

 δ+= t
0
t

A
t daa        δ+= '

t
0
t

A
t rff      and    δ+= t

0
t

A
t dmm    (A.11) 

with dt and rt defined in Lemmas 1 and 2, respectively. 

Proof.- The proof is also made by induction: 

A
1a = EA(θ1 | D0, MA, δ) = EA(G1θ0 + H1δ + w1 | D0, MA, δ) = G1

0
1m + H1δ = 0

1a  + d1δ 

A
1f  = EA(Y1 | D0, MA, δ) = EA( '

1F θ1 + '
1X δ + v1 | D0, MA, δ) = 0

1f + '
1r δ 

A
1m  = E1(θA | D1, MA, δ) = A

1a  + A1 (Y1 – A
1f ) = 0

1m  + d1δ 

so the result is true at time 1. If we assume that the result is true for period t-1, then for 

period t it is verified that: 

A
ta   = EA(θt | Dt-1, MA, δ) = Gt

A
1tm − + Htδ  = Gt ( )δ+ −− 1t

0
1t dm  + Htδ  = 0

ta  + dtδ 
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A
tf   = EA(Yt | Dt-1, MA, δ) = '

tF A
ta  + '

tX δ = '
tF ( 0

ta  + dtδ) + '
tX δ = 0

tf  + '
tr δ 

A
tm  = EA(θt | Dt, MA, δ) = A

ta  + At (Yt – A
tf ) = 0

tm  + dtδ 

This establishes (A.11). ■  

Proof of Theorem 2  

Using a similar proof to Theorem 1 it is easily shown that Yt |Dt-1,MA,δ,V is normal 

with variance V *
tQ   given that, conditional on δ and V, MA is a linear state space model 

similar to the model given by (1)-(4). With regard to the mean, and using Lemmas 3 and 

4 it is verified that: 

EA(ut  | Dt-1, V, MA, δ) = EA(Yt  | Dt-1, MA, δ) – ft  = A
tf - ft =  ( '

tr – '
tg ) δ = '

tx δ 

in such a way that Theorem 2 is established. ■  

Proof of Theorem 3.- 

a)  It can be proved that: 

( ) ( )











−π=

−
− *

t

2
t2/1*

t01tt VQ2
u

expVQ2M,V,D/uP     (A.12) 
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Sn
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From (A.12) and (A.13)  it follows that: 

 P (ur,ur+1…,ut | Dr-1, M0) = ( ) ( )dV M ,D|VP M ,V,D|u,...,u,uP 01r01rt1rr −−+∫ = 

= ( ) ( ) =∫∏
=

− dVM,D | V P M,V,D|uP 01-r

t

ri
01ii  

∫
∑

∏ =
















































+

−






Γ






















π=







 +

+−+
−

=
−−

−

−−−

=

−

−

dVV
2

Q
u

Sn

V
1exp

2
n

2
Sn

Q2
1

2
)1rt(n

t

ri
*
i

2
i

1r1r

1r

2
n

1r1r2/1t

ri

*
i

1r

1r

   



DTECONZ 2003-05 M. Salvador and P. Gargallo 

 31

 ∫∏ 
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From (A.14),  (11) is deduced  

b) From Theorem 2 it is verified that: 
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with *
t

*
t

*
t S  and q  , λ  defined in (12)- (14). The rest of the proof is similar to a) and 

it is omitted ■   
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TABLES 

 

TABLE 1.  
Comparison of the monitoring and intervention procedures for the Lake Huron series 

Procedure RMSE MAD LLF 
Without Monitoring 1.1834 0.9591 -1.6358 

GS monitor 1.0611 0.8806 -1.4878 
WH monitor 1.0904 0.8996 -1.5355 
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TABLE 2.  
Posterior estimations of the shocks vector for the Lake Huron series 

Intervention E[δ|DT,M0] D[δ|DT,M0] 
Outlier 1929 1.2606 0.6099 

Level Change 1942 0.6092 0.2257 
Slope Change 1942 0.0201 0.0086 
Level Change 1943  0.5611 0.2254 
Slope Change 1943 0.0181 0.0084 

Outlier 1964 -1.3600 0.6115 
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TABLE 3. 
Comparison of the monitoring and intervention procedures for the CP6 series 

Procedure RMSE MAD LLF 
Without Monitoring 45.1718 36.0134 -5.3811 

GS monitor 37.9861 29.1810 -5.1338 
WH monitor 40.9156 30.2199 -5.2820 
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TABLE 4.  
Posterior estimations of the shocks vector for the CP6 series 

Intervention E[δ|DT,M0] D[δ|DT,M0] 
Outlier December 1955 74.22 24.04 

Level Change January 1956 30.29 14.28 
Level Change January 1957 29.05 13.76 
Level Change August 1957  -23.13 13.09 
Slope Change August 1957 -3.41 1.74 
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TABLE 5. 
Comparison of the monitoring and intervention procedures 

for the logarithms of the monthly number of car drivers killed or  
seriously injured in the United Kingdom 

Procedure RMSE MAD LLF 
Without Monitoring 0.1057 0.0797 0.8097 

GS monitor 0.0917 0.0708 0.9673 
WH monitor 0.1027 0.0789 0.8107 
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TABLE 6. 
Posterior estimations of the shocks vector for the logarithms of the monthly number of 

car drivers killed or seriously injured in the United Kingdom 
Intervention E[δ|DT,M0] D[δ|DT,M0] 

Level Change October 1973 -0.0510 0.0193 
Slope Change October 1973 -0.0014 0.0006 

Level Change November 1973 -0.0516 0.0192 
Slope Change November 1975 -0.0014 0.0006 

Level Change January 1975 -0.0405 0.0180 
Slope Change January 1975 -0.0008 0.0005 

Outlier August 1976 -0.1262 0.0616 
Level Change January 1983 -0.0392 0.0148 
Level Change February 1983 -0.0415 0.0142 
Slope Change February 1983 -0.0006 0.0003 
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TABLE 7. 
Comparison of the monitoring and intervention procedures 

for the food industry sales series 
Procedure RMSE MAD LLF 

Without Monitoring 0.7524 0.5473 -1.2043 
GS monitor 0.7252 0.5400 -1.1510 
WH monitor 0.6902 0.5125 -1.2240 
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TABLE 8. 
Posterior estimations of the shocks vector  

for the food industry sales series 
Intervention E[δ|DT,M0] D[δ|DT,M0] 

Level Change April 1978 0.4110 0.1686 
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FIGURES 
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Figure 1: One-step ahead forecast (dashed line) and 99% uncertainty limits (dotted lines) 
for the lake Huron series (continuous line). Above: with GS monitor, below: with WH 
monitor 
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Figure 2: Retrospective estimations of the trend (dashed line) and the 99% uncertainty 
limits (dotted lines) for the lake Huron series by applying the three procedures. Above: 
without monitoring (dotted lines), middle: with WH monitor and below with GS monitor 
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Figure 3: Retrospective estimations of the slope (dashed line) and the 99% uncertainty 
limits (dotted lines) for the lake Huron series by applying the three procedures. Above: 
with GS monitor and below with WH monitor 
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Figure 4: One-step ahead forecast (dashed line) and 99% uncertainty limits (dotted lines) 
for the CP6 series (continuous line). Above: with GS monitor, below: with WH monitor 
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Figure 5: On line estimation of the slope (dashed line) and 99% uncertainty limits (dotted 
lines) for the CP6 series (continuous line). Above: with GS monitor, below: with WH 
monitor 
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Figure 6: Retrospective estimations of the trend (dashed line) and the 99% uncertainty 
limits (dotted lines) for the CP6 series by applying the three procedures. Above: without 
monitoring (dotted lines), middle: with WH monitor and below with GS monitor 
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Figure 7: One-step ahead forecast (dashed line) and 99% uncertainty limits (dotted lines) 
for the logarithm of the monthly number of car drivers killed or seriously injured in the 
United Kingdom (continuous line) obtained by applying the three procedures. Above: with 
GS monitor, below: with WH monitor 
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Figure 8: On line estimation of the trend (dashed line) and 99% uncertainty limits (dotted 
lines) for the logarithm of the monthly number of car drivers killed or seriously injured in 
the United Kingdom (continuous line) obtained by applying the three procedures. Above: 
with GS monitor, below: with WH monitor 
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 Figure 9: On line estimation of the seasonal variation (dashed line) and 99% uncertainty 
limits (dotted lines) for the logarithm of the monthly number of car drivers killed or 
seriously injured in the United Kingdom (continuous line) obtained by applying the three 
procedures. Above: with GS monitor, below: with WH monitor 
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Figure 10: Retrospective estimations of the trend (dashed line) and the 99% uncertainty 
limits (dotted lines) for the logarithm of the monthly number of car drivers killed or 
seriously injured in the United obtained by applying the three procedures. Above: without 
monitoring (dotted lines), middle: with WH monitor and below with GS monitor  
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Figure 11: One-step ahead forecast (dashed line) and 99% uncertainty limits (dotted lines) 
for the food industry sales series (continuous line) obtained by applying the three 
procedures. Above: with GS monitor, below: with WH monitor 
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Figure 12: On-line non-seasonal trend estimation (dashed line) and 99% uncertainty limits 
(dotted lines) for the food industry sales series (continuous line) obtained by applying the 
three procedures. Above: with GS monitor, below: with WH monitor 
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Figure 13: On-line non-seasonal pattern estimation (dashed line) and 99% uncertainty 
limits (dotted lines) for the food industry sales series obtained by applying the three 
procedures. Above: with GS monitor, below: with WH monitor 
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Figure 14: Retrospective estimation of the intercept (continuous line) and 99% uncertainty 
limits (dotted lines) for the food industry sales series obtained by applying the three 
procedures. Above: without monitoring, middle: with GS monitor, below: with WH 
monitor 
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Figure 15: Retrospective estimation of the regression coefficient (continuous line) and 
99% uncertainty limits (dotted lines) for the food industry sales series obtained by applying 
the three procedures. Above: without monitoring, middle: with GS monitor, below: with 
WH monitor 
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